1. SMD-01A Overview

The SMD-01A is the world’s smallest encoder head IC in its class, incorporating a LED light source and a light receiver sensor IC in a single surface-mounted-device package. It employs an optical sensor array that greatly reduces signal degradation problems due to variations in mounting position. It delivers high-accuracy position detection even when mounted using reflow methods. It is ideal for various applications that require the following characteristics.

[Features]
- Miniature clear molded package 5.3mm (W) × 4.3mm (L) × 1.68mm (H)
- High-accuracy two-phase differential analog output
  - A-phase/B-phase analog, sine wave outputs.
  - Also, inverted differential outputs for noise cancellation.
- 20µm output signal period (fixed) High S/N ratio and superior Lissajous characteristic for better than sub-micron resolution, in combination with external interpolation circuit
- Built-in LED light source 3-step adjustable light intensity
- Wide supply voltage range 3.13 to 5.25 V
- Low current consumption 12.2mA (typ)
- Easy positioning/installation
- Reflow mounting (*confirm suitability of reflow conditions)

[Typical Applications]
- Miniature actuators, piezo-actuators
- Precision stages
- Distance measurement equipment, angle measurement equipment, linear gauges
- Galvanometers
- Optical axis control of laser light
- Chip mounters, PCB/FPC substrate processing, IC handlers & FA mounting/processing
- Motion control of industrial robots and consumer robots
- Position/speed control in applications requiring miniaturization and high accuracy
2. Typical SMD-01A Encoder Configurations

2.1. Linear Encoder Configuration and Alignment

A linear encoder can be constructed using the SMD-01A and a linear scale. The linear scale pattern width can be made as narrow as ±0.5mm when the linear scale pattern width center correctly matches the SMD-01A optical center (Y orientation in the following figure). The pattern width should be chosen after careful evaluation.

The optical center point is a point midway between the SMD-01A built-in LED source optical center and the light sensor photodiode center.
2.2. Rotary Encoder Configuration and Alignment

A rotary encoder can be constructed using the SMD-01A and a disk-shaped rotary scale. For a rotary encoder, the SMD-01A optical center point must be correctly positioned in the center of the rotary scale horizontally and vertically, as shown in the following figure.
2.3. Advantages of Small Diameter Rotary Encoders

When a general-purpose encoder head is used for a rotary encoder, the output amplitude tends to decrease because the encoder head is designed to receive parallel reflected light of the correct period whereas the reflected light is fan-shaped due to the scale pattern. As the output amplitude decreases, operation at high interpolation factors becomes difficult and high resolution increasingly difficult to obtain.

The SMD-01A, however, has a miniature light receiver with a short scale pitch that reduces the effects of reflected light from fan-shaped rotary scales. Consequently, it can be employed in miniature, lightweight rotary encoders. It also helps to reduce the rotational inertia of parts with attached encoder or scale for better system miniaturization and weight reduction.

The following table shows typical signal amplitudes for a small-diameter rotary encoder configuration using the SMD-01A.

### SMD-01A output amplitude using small-diameter rotary scale (reference data)

<table>
<thead>
<tr>
<th>Scale diameter (mm)</th>
<th>Scale pattern width (mm)</th>
<th>CPR (pulse count / revolution)</th>
<th>SMD-01A output amplitude (%) [linear scale representing 100% amplitude](^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>0.5</td>
<td>(\approx 1500)(^1)</td>
<td>95%</td>
</tr>
<tr>
<td>6.4</td>
<td>0.5</td>
<td>(\approx 1000)(^1)</td>
<td>80%</td>
</tr>
<tr>
<td>5.1</td>
<td>0.4</td>
<td>(\approx 800)(^1)</td>
<td>60%</td>
</tr>
</tbody>
</table>

*1: These values are achieved by converting A/B phase analog signals to a binary code with a comparator circuit.

The CPR values are calculated using the following equation.

\[
CPR = \frac{\text{Scale diameter} (mm) \times \pi}{0.02 (mm)}
\]

Resolution equivalent to 4 times as much as CPR above is obtained by counting rising/falling of A/B phases respectively. Higher resolution according to interpolation factors is realized by using an external interpolation circuit.
2.4. Cylindrical Rotary Encoder Configuration

Linear detection of the rotation of cylindrical rotating bodies can be achieved using flexible PET scales, as shown in the figure. However, a 20µm pitch reflection pattern is required at the joint between both ends of the scale to form a complete scale around the circumference, which must be taken into consideration when attaching the scale. Of course, this is not a problem if the scale is attached to just a portion of the cylinder for detecting rotational positions of less than 360°.
2.5. Scales for SMD-01A

As described, a linear/rotary encoder can be constructed in combination with a linear scale or rotary scale. Scales are not provided with the SMD-01A; they must be acquired separately. The following manufacturers can supply scales that can be used with the SMD-01A.

2.5.1. High-accuracy encoders with <1µm resolution:

Encoders with high linearity:

Generally, glass scales using a glass substrate are most suitable. The following manufacturer can supply both linear and rotary scales.

[Glass scale manufacturer]
- Koshibu Precision Pty. Ltd.
- 〒179-0085
  2-20-11 Hayamiya, Nerima-ku, Tokyo, Japan
- TEL: (03) 3934-2670
- URL: http://www.koshibu.co.jp

2.5.2. Encoders with resolution 1µm~ resolution:

Encoders with scales attached to cylinders or other curved surfaces:

Encoders for restricted space applications:

Flexible scales that use a PET substrate are more suitable. These can be supplied by the following manufacturer. PET scales, in comparison with glass scales, are typically used for encoders in thin, narrow spaces.

[Flexible (PET) scale manufacturer]
- Meltec Corporation, Sales/Management Center
- 〒270-0164
  1038 Nagareyama, Nagareyama City, Chiba, Japan
- TEL: (04) 7178-8800
- URL: http://www.e-meltec.jp

Note that the SMD-01A output signal is designed for a detection period of 20µm so the scale should be 20µm pitch (reflective surface 10µm / non-reflective surface 10µm). Detection period cannot be changed even if the scale pitch is changed. However, the SMD-01A high-accuracy analog output signals can be configured to work with arbitrary resolution using external interpolation circuits and counters. With a glass scale, it is possible to achieve resolutions of 0.1µm or better with careful design.
3. Operating Principles and SMD-01A Characteristics

The SMD-01A optical encoder head operates using 3-slit diffraction grating principles. The main structural components are comprised by the SMD-01A built-in LED and light receiver IC, and an external scale.

The encoder functions by emitting light from the LED onto a scale. Diffracted light from the scale is picked up by the light receiver IC positioned at the focal point of the diffracted light. The periodic patterns of shade and light are detected in order to determine the position on the scale.

The light receiver IC contains an array of light sensors (photodiodes) arranged in an array at precisely 1/4 the pitch of the diffracted light in order to observe the patterns in the diffracted light.

The light receiver photodiode sensor array simultaneously observes the portion of the diffracted light and outputs an average value signal. The SMD-01A is designed with A-phase and B-phase outputs used to counterbalance the effects of variations from perfect parallel movement as the photodiode array moves relative to the scale.

These abilities provide the SMD-01A with the following features:

1) Reduces susceptibility to output signal effects caused by localized defects or dirt on the surfaces of the SMD-01A and scale.

2) Reduces susceptibility to SMD-01A output amplitude variation due to positioning errors.

Reference data for the output amplitude variation due to positioning errors are provided in the device datasheet. However, conditions of optimum optics of this product may vary due to mounting tolerance of optical elements, so thorough evaluation is needed to set the conditions. It is recommended to check the output signals while positioning the encoder particularly when using a small-diameter rotary scale, which effect of alignment conditions on signal amplitude and phase difference is greater than a linear scale, or an external interpolation circuit to achieve resolutions of 1µm or better.

4. Reference Information about SMD-01A Specifications

4.1. Reference Information about Package

4.1.1. Layout of SMD-01A Internal Components

The LED and light receiver IC are arranged as shown below. The optical center is the point midway between the LED emitter and light receiver. See sections 2-1 and 2-2 for examples.
4.1.2. Bottom Surface External View

The gray rectangular portion in the following diagram from the datasheet (portion with “SMD-01” label) indicates the bottom surface insulation resin portion, and is not an electrical terminal.

![Bottom View Diagram](image)

4.1.3. Typical Land Pattern

When mounting on a PCB or FPC board, the following land pattern is recommended.

![Typical Land Pattern](image)

4.1.4. Environmental Data

The SMD-01A is a lead-free, PVC-free (polyvinyl chloride), Halogen-free, and RoHS compliant product.
4.2. Electrical Specifications Reference Information

4.2.1. Basic Connection

The SMD-01A operates with just power supply and setting terminal connections. However, bypass capacitors should also be connected as shown below to counter environmental noise and in applications that require high accuracy. The 0.1μF capacitor should be positioned as close as possible to the SMD-01A. Ceramic bypass capacitors with excellent frequency response are most suitable.

![Typical connection (VCC=5V supply, minimum LED current)](image)

4.2.2. Output Amplitude Adjustment

[SMD-01A Electrical Characteristics Excerpt]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-phase output signal amplitude</td>
<td>VAP-P</td>
<td>Vp-p</td>
<td>0.13</td>
<td>0.85</td>
<td>3.00</td>
<td>V</td>
<td>VA</td>
</tr>
<tr>
<td>AB-phase output signal amplitude</td>
<td>VABP-P</td>
<td>SWL1=H, SWL2=H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VAB</td>
</tr>
<tr>
<td>B-phase output signal amplitude</td>
<td>VBP-P</td>
<td>VAB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VB</td>
</tr>
<tr>
<td>BB-phase output signal amplitude</td>
<td>VBBP-P</td>
<td>VBB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VBB</td>
</tr>
</tbody>
</table>

The SMD-01A output signal specifications are outlined above. If the output amplitude must be guaranteed to be above a certain value (for example, 0.3V), the LED luminosity for each device can be adjusted to increase/decrease the output amplitude using the following trimming settings.

[Output Amplitude Multiplication Settings]

<table>
<thead>
<tr>
<th>SWL1 terminal</th>
<th>H</th>
<th>H</th>
<th>L</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWL2 terminal</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>A,B-phase output amplitude multiplication</td>
<td>×1.0</td>
<td>×1.8</td>
<td>×2.6</td>
<td>Off</td>
</tr>
</tbody>
</table>

*H = VCC level, L = GND level

Returning to the example, the SWL1 and SWL2 logic levels can be adjusted to ensure the output amplitude is set to 0.3V or higher.

Note that changing the LED current will also greatly affect the SMD-01A current consumption. Check the electrical characteristics to determine the current consumption under the desired operating conditions.

In practice, the output amplitude rarely approaches the maximum or minimum values published in the electrical specifications. In almost all applications, the LED current can be set to the minimum value without problem.
4.2.3. Output Noise Measures: Differential Outputs

The SMD-01A outputs two sine wave signals (VA and VB) with a period of 20µm, and two inverted forms of these signals (VAB and VBB). There is a 90° phase difference between VA and VB, and between VAB and VBB. The differential output of non-inverted and inverted signals for both A-phase and B-phase waveforms can be used to prevent external electric field interference that can cause common-mode noise.

A typical differential output connection is shown in the following figure.

The four analog signals have an offset from the Vref reference voltage output. Any external circuit connected to the outputs must calibrate for these offsets.
4.3. Temperature Specifications Reference Information

The SMD-01A maximum storage temperature is 80°C. If the package is stored at temperatures higher than 80°C for an extended length of time, the package resin will begin to discolor yellow and the output amplitude characteristics will begin to deteriorate. The maximum operating temperature is 60°C. The IC generates additional heat internally during operation, but will not exceed 80°C even when the LED luminosity is set to maximum and is generating the maximum heat.

4.3.1. Operation at Ambient Temperatures Exceeding 60°C

When the LED luminosity is set to “Low” or “Medium” using SWL1 and SWL2, the internal heat generated by the LED is limited, making operation possible at ambient temperatures higher than 60°C. However, the relationship between IC and LED heat generation and device temperature is greatly influenced by the mounting and other conditions, so careful evaluation should be carried out under all possible operating conditions.

<table>
<thead>
<tr>
<th>SWL1</th>
<th>SWL2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>“Low” LED luminosity, minimum heat generation</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>“Medium” LED luminosity, medium heat generation</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>“High” LED luminosity, 60°C operating temperature conditions</td>
</tr>
</tbody>
</table>

As an example, the device temperature may increase by 5 to 6°C, depending on operating conditions, when the LED luminosity is set to “Low”.

5. Handling Precautions

- Ensure the gray portion containing the LED and built-in IC, shown in the diagram, clean and free from dust and other contaminants. If it is dirty, gently wipe the surface with a soft clean cloth dipped in methanol or ethanol to remove all contaminants. The use of other liquids or wiping vigorously may cause scratching, clouding, or otherwise damage the surface of the encoder. Exercise caution when cleaning the device surface.
- Avoid direct contact with the SMD-01A and scale when handling, installing, or adjusting.
- Ensure that the operating temperature of any unit or housing containing the SMD-01A will not exceed the temperature specifications of the device.
- The SMD-01A is designed to prevent external light interference. However, note that there is the potential that strong localized light sources may affect the encoder output.
- The light intensity of the SMD-01A built-in LED does not exceed the value for Class 1 standard visible LED eye safety as prescribed by IEC60825-1.
This Application Note is provided as a reference for product introduction and customer evaluation purposes for the SMD-01A optical encoder head. Typical characteristics and other values mentioned in this document are provided as reference data only to demonstrate principles and trends; this document does not include manufacturing tolerances and other characteristics data. Devices should only be used after thorough evaluation under actual operating conditions.

Please pay your attention to the following points at time of using the products shown in this document.

1. The products shown in this document (hereinafter "Products") are designed and manufactured to the generally accepted standards of reliability as expected for use in general electronic and electrical equipment, such as personal equipment, machine tools and measurement equipment. The Products are not designed and manufactured to be used in any other special equipment requiring extremely high level of reliability and safety, such as aerospace equipment, nuclear power control equipment, medical equipment, transportation equipment, disaster prevention equipment, security equipment. The Products are not designed and manufactured to be used for the apparatus that exerts harmful influence on the human lives due to the defects, failure or malfunction of the Products. If you wish to use the Products in that apparatus, please contact our sales section in advance. In the event that the Products are used in such apparatus without our prior approval, we assume no responsibility whatsoever for any damages resulting from the use of that apparatus.

2. NPC reserves the right to change the specifications of the Products in order to improve the characteristics or reliability thereof.

3. The information described in this document is presented only as a guide for using the Products. No responsibility is assumed by us for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of the third parties. Then, we assume no responsibility whatsoever for any damages resulting from that infringements.

4. The constant of each circuit shown in this document is described as an example, and it is not guaranteed about its value of the mass production products.

5. In the case of that the Products in this document falls under the foreign exchange and foreign trade control law or other applicable laws and regulations, approval of the export to be based on those laws and regulations are necessary. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.